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an annual land cover dataset for 
the Baltic Sea Region with crop 
types and peat bogs at 30 m from 
2000 to 2022
Vu-Dong Pham  1,2 ✉, Farina  de Waard1, Fabian thiel1, Bernd Bobertz1,2, Christina Hellmann1, 
Duc-Viet Nguyen1, Felix Beer1, M. Arasumani1,2, Marcel Schwieder3,4, Jörg Hartleib1, 
David Frantz  5 & Sebastian  van der Linden  1,2

We present detailed annual land cover maps for the Baltic Sea region, spanning more than two decades 
(2000–2022). The maps provide information on eighteen land cover (LC) classes, including eight general 
LC types, eight major crop types and grassland, and two peat bog-related classes. Our maps represent 
the first homogenized annual dataset for the region and address gaps in current land use and land cover 
products, such as a lack of detail on crop sequences and peat bog exploitation. To create the maps, we 
used annual multi-temporal remote sensing data combined with a data encoding structure and deep 
learning classification. We obtained the training data from publicly available open datasets. The maps 
were validated using independent field survey data from the Land Use/Cover Area Frame Survey (LUCAS) 
and expert annotations from high-resolution imagery. The quantitative and qualitative results of the 
maps provide a reliable data source for monitoring agricultural transformations, peat bog exploitation, 
and restoration activities in the Baltic Sea region and its surrounding countries.

Background & Summary
Land use/land cover (LULC) products are valuable for assessing the status of remaining natural habitats and 
determining the degree of human pressure on natural ecosystems. Over the past few decades, the availability of 
openly and globally accessible remote sensing data has fuelled various studies to map LULC over extended areas 
and time periods1. In Europe, the CORINE Land Cover (CLC2) is a well-established and comprehensive LULC 
product that provides thematic LULC maps of roughly 44 land cover (LC) classes across multiple years. The CLC 
product has set up a standard for subsequent studies in Europe that followed a similar LC classification scheme 
to produce finer spatial resolution and denser time-series LULC maps3–8.

However, one of the drawbacks of CLC and its derivatives is the lack of detailed information on croplands. 
For example, the CLC classification scheme contains 44 LC classes, but for agricultural land, which accounts for 
more than 42% of LC in Europe9, it does not further differentiate. At the same time, detailed information on 
agricultural land use enables monitoring of the spatial distribution of crop types, the analysis of crop sequences, 
and the assessment of the composition of the agricultural landscape as a whole, which is crucial in the context 
of biodiversity10. Crop sequence information is also proving useful given the rapid changes that agricultural 
practices in Europe have undergone in adapting to climate change over the last few decades11. Although there 
have been attempts to map crop types at both national and continental scales12–14, they are often only available 
for single or short periods. LULC products with crop type information of large regions and over decadal periods 
are still generally scarce.
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Located in the center of Europe, the Baltic Sea region (BSR) has witnessed a similar pace of change in agri-
culture as the rest of the continent15. In addition to that, the BSR has also experienced the degradation of natural 
peat bogs and other mires through various activities such as peat harvesting, or draining peatlands to be used 
as cropland, grassland, or forestry. Since the beginning of 2000, peat extraction in bogs has been estimated at up 
to 1.2 million t/year in Estonia, and roughly 0.5–0.7 million t/year in Latvia and Lithuania16. The degradation 
of peatlands due to mining activities results in adverse environmental impacts across the BSR, including losses 
in carbon sequestration17, potential and biodiversity18 and water pollution19. In addition, degraded peatlands 
are important carbon sources, with peat decomposition under aerobic conditions causing large amounts of 
greenhouse gas (GHG) emissions20,21. Many factors contribute to the rates of GHG emissions, e.g., manage-
ment on grassland and organic soils22, land use changes23 and agricultural practice24, and foremost the water 
tables depth of drained peatlands20. Hence, annual monitoring of peat bog exploitation in the BSR is essential 
to inform policy-making and facilitate the conservation of its associated ecosystems, particularly in response to 
the challenges posed by the climate crisis. This could be achieved by interpreting LULC maps with information 
of exploited and unexploited peat bogs, as well as the land use on drained peatland. So far, there are only a few 
LULC datasets in Europe that contain information on natural peat bogs and their exploitation. For example, 
datasets such as Natura 200025 or Coastal Zone26 provide LC maps with this information, but only within the 
limited boundaries of natural reserves and coastal areas. In addition, these maps only exist for specific years, 
while spatially continuous annual products, which would allow to identify rewetting activities following peat 
harvesting, for example, are still lacking. Such maps would be helpful for monitoring the success of restoration 
and efficacy of restoration strategies27.

To bridge this gap, we here present the Baltic Sea Region Land Cover Plus (BSRLC+), the first set of annual 
land cover maps at 30 m resolution of the BSR over two decades (2000–2022), containing detailed information 
on crop types and peat bog extractions.

Methods
Study area. We mapped the BSR, here defined as land masses bordering the Baltic Sea without the Gulf of 
Bothnia. The area covers a total area of 1,143,000 km2 and spans over 9 countries (Fig. 1). It fully covers Denmark, 
Estonia, Latvia, and Lithuania, northern parts of Germany and Poland and southern Sweden and Finland. From 
Russia the Kaliningrad exclave as well as the coastline between Finland and Estonia are covered. All islands within 
the geographic extent are also included, as well as coastal waters within the respective image tiles of the covered 
land areas.

Overall workflow. To create the maps, we structured a workflow (Fig. 2) that incorporates multiple 
processes:

•	 Satellite data processing: We downloaded and processed all available Landsat and Sentinel-2 imageries over 
more than two decades (from 2000 to 2022). This includes estimating surface reflectance, cloud removal and 
data harmonization.

•	 Reference data: We collected various existing, open LC datasets and applied different sampling strategies to 
sample reference LC data to train the machine learning model.

•	 Mapping: We used deep learning classification and performed hierarchical mapping to predict first level maps 
(Level 1) containing eight general LC types, followed by detailed prediction of LC maps with crop types and 
wetland types (Level 2) on top of the Level 1 results. The final maps contain eighteen LC types. For each level, 
we applied different temporal and spatial filtering methods to remove noise.

•	 Evaluation of final maps: We assessed map accuracies using independent in-situ reference LC data and 
national statistics, using various quantitative metrics, as well as qualitative assessments by comparing with 
very high-resolution imageries.

Land cover classes. We mapped annual LC using a hierarchical approach, with the low-level map (Level 
1) containing eight general LC types: Built-up, Bareland, Water, Shrubland, Coniferous forest, Broadleaf forest, 
Wetland, Cropland and Grassland. The final high-level map (Level 2) provides more details by separating the 
Wetland class into Wetland marsh, Exploited peat bog, and Unexploited peat bog as well as separating Cropland 
and Grassland into: Wheat, Barley, Rye, Oat, Maize, Seed crops, Root crops, Dry pulses and vegetable, Grassland. 
In Level 2 the Grassland class comprises all areas of the open landscape that are not used as arable land. This 
includes meadows and pastures as well as (semi-) natural grasslands. In summary, we mapped a total of eighteen 
LC classes, the nomenclature for each class is shown in Table 1.

reference land cover data. To support supervised machine learning classification over large space and 
time, diverse and extensive training data are essential. For non-crop-related LC classes, we used existing LC 
maps, datasets, and remote sensing spectral indices, combined with rule-based filtering for semi-automated data 
collection. The datasets, mostly including those from the Copernicus Land Monitoring Service (CLMS, https://
land.copernicus.eu/), provided detailed quantitative and categorical maps useful for sampling reference LC types 
(see Table 2).

All datasets that we used (Table 2) were rasterized or resampled to a 30 m resolution (using cubic interpo-
lation for continuous data and nearest neighbour interpolation for categorical data) to be comparable to our 
satellite remote sensing data (see Remote sensing data section). From the selected dataset, for each interested 
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LC class, we applied multiple rule-based methods to acquire large amounts of reference LC points with high 
confidence. All sampled points were considered consistent (invariant in LC type) during the period from 2006 
to 2018, in details:

Fig. 1 (a) The Baltic Sea region; (b) Thematic details of CORINE Land Cover2 and Continental Europe Land 
Cover6 (44 classes) compared to Baltic Sea Region Land Cover Plus (18 classes) maps for 2018; upper example: 
an area in Germany (center coordinate 52.89 N, 10.85E) dominated by agricultural land, which is oversimplified 
by existing LC products, whereas our maps reveal the diverse land use in agriculture; bottom example: our 
map distinguishes unexploited and exploited peat bogs in Estonia (center coordinate 58.54 N, 24.37E). High 
resolution images are taken from Google Earth.
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•	 Built-up: Imperviousness dataset (2006, 2009, 2012, 2015, 2018) were used. A 5 × 5 (pixels) focal filter runs 
across the dataset in all five years. The center pixels were selected as Built-up if they satisfy all the following 
criteria: (1) All surrounding pixels (24 pixels) have imperviousness values > 20% in all years; (2) The center 
pixel has more than 50% of imperviousness in all five years.

•	 Bareland: Spectral temporal metrics (STM) of Normalized Difference Vegetation Index (NDVI28) and Nor-
malized Difference Water Index (NDWI29), and Imperviousness dataset (2006, 2009, 2012, 2015, 2018) were 
used. Based on our analysis on spectral profiles, Bareland pixels were selected if they satisfy all of the follow-
ing criteria: (1) 90th percentile NDVI value is lower than 0.3 throughout 2006–2018 (to filter out pixels with 
vegetation signal); (2) 90th percentile NDWI value is lower than 0 throughout 2006–2018 (to filter out pixels 
dominated by water); (3) All imperviousness values = 0 in 5 years (2006, 2009, 2012, 2015, 2018) (to filter out 
pixels dominated, or close to built-up areas).

•	 Water: Spectral temporal metrics (STM) of NDWI and NDVI, and Imperviousness dataset (2006, 2009, 2012, 
2015, 2018) were used. Based on our analysis on spectral profiles, Water pixels were selected only if they 
satisfy all the following criteria: (1) 10th percentile NDWI value is greater than 0.3 throughout 2006–2018 
(to ensure the pixels are dominated by permanent water); (2) 90th percentile NDVI value is lower than 0.3 
throughout 2006–2018 (to filter out pixels with strong vegetation signal); (3) All imperviousness values = 0 in 
5 years (2006, 2009, 2012, 2015, 2018).

•	 Shrubland: CLC dataset (2006, 2012, 2018), N2K dataset (2006, 2012, 2018), Tree Density dataset (2012, 
2015, 2018) and Imperviousness (2006, 2009, 2012, 2015, 2018) were used. Shrubland pixels were selected if 
they satisfy all the following criteria: (1) Both CLC and N2K contains one of these classes: Moors and heath-
land, Sclerophyllous vegetation and Transitional woodland-shrub in all three years 2006, 2012 2018; (2) Tree 

Fig. 2 Overall workflow.
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density values in the pixels < 30% in three years 2012, 2015, 2018; (3) All imperviousness values = 0 in 5 years 
2006, 2009, 2012, 2015, 2018.

•	 Coniferous forest: CLC dataset (2006, 2012, 2018), forest type dataset (2006, 2012, 2018), and tree density 
dataset (2012, 2015, 2018) were used. A 5 × 5 focal filter runs across all datasets. The center pixels were 
selected as Coniferous forest if they satisfy all the following criteria: (1) All pixels (25 pixels) are classified as 
coniferous forest in all three years 2006, 2012, 2018 in the CLC dataset; (2) All pixels (25 pixels) are classified 
as coniferous forest in all three years 2012, 2015, 2018 in the forest type dataset; (3) All pixels (25 pixels) have 
tree density values > 75% in all three years 2012, 2015, 2018.

•	 Broadleaf forest: CLC dataset (2006, 2012, 2018), forest type dataset (2006, 2012, 2018), and tree density data-
set (2012, 2015, 2018) were used. A 5 × 5 focal filter runs across all datasets. The center pixels were selected 
as Broadleaf forest if they satisfy all the following criteria: (1) All pixels (25 pixels) are classified as broadleaf 
forest in all three years 2006, 2012, 2018 in the CLC dataset; (2) All pixels (25 pixels) are classified as broadleaf 
forest in all three years 2006, 2012, 2018 in the forest type dataset; (3) All pixels (25 pixels) have tree density 
values > 75% in all three years 2012, 2015, 2018.

•	 Wetland marsh: CLC dataset (2006, 2012, 2018) and N2K dataset (2006, 2012, 2018) were used. A 5 × 5 focal 
filter runs across all datasets. The center pixels were selected as Wetland marsh if they satisfy all the following 
criteria: (1) All pixels (25 pixels) are classified as inland marsh or salt marsh in all three years 2006, 2012, 2018 
in the CLC dataset; (2) All pixels (25 pixels) are classified as inland marsh or salt marsh in all three years 2006, 
2012, 2018 in the N2K dataset.

•	 Exploited peat bog: CLC dataset (2006, 2012, 2018) and N2K dataset (2006, 2012, 2018) were used. A 5 × 5 
focal filter runs across all datasets. The center pixels were selected as Exploited peat bog if they satisfy all of 
the following criteria: (1) All pixels (25 pixels) are classified as peat bog in all three years (2006, 2012, 2018) 
from in the CLC dataset; (2) All pixels (25 pixels) are classified as exploited peat bog in all three years (2006, 
2012, 2018) in the N2K dataset.

•	 Unexploited peat bog: CLC dataset (2006, 2012, 2018) and N2K dataset (2006, 2012, 2018) were used. A 5 × 5 
focal filter runs across all datasets. The center pixels were selected as Unexploited peat bog if they satisfy all of 
the following criteria: (1) All pixels (25 pixels) are classified as peat bog in all three years (2006, 2012, 2018) 
from in the CLC dataset; (2) All pixels (25 pixels) are classified as unexploited peat bog in all three years 
(2006, 2012, 2018) in the N2K dataset.

•	 Crop land and grassland: CLC dataset (2006, 2012, 2018), N2K dataset (2006, 2012, 2018), Tree density (2012, 
2015, 2018), and Imperviousness (2006, 2009, 2012, 2015, 2018) were used. A 5 × 5 focal filter runs across all 
datasets. The center pixels were selected as Cropland and grassland if they satisfy all the following criteria: (1) 
Both CLC and N2K contains one of these classes in all three years (2006, 2012, 2018): Irrigated and non-irri-
gated arable land, Managed grassland (Pasture), Natural grassland; (2) All pixels (25 pixels) have Tree density 
values = 0% in all three years 2012, 2015, 2018; (3) All pixels (25 pixels) have Imperviousness values = 0% in 
all five years (2006, 2009, 2012, 2015, 2018).

We sampled up to 10,000 training pixels per class, and each is considered invariant in LC type during 2006–
2018. This way, for each sample, we can derive multi-annual spectral profiles from remote sensing data, which 
enhance the temporal transferability of supervised classifications (see details in Classification section).

For crop type reference data, we used the EuroCrop dataset30, which includes harmonized crop polygons 
from sixteen European countries. We used all available datasets that overlapped with the BSR. From the refer-
ence data statistics, we defined nine major crop types in the area: Wheat; Barley; Rye; Oat; Maize; Seed crops; 
Root crops; Dry pulses and vegetables; and Grassland (see Table 3 for nomenclature).

Land cover Level 1 Land cover Level 2 Nomenclature

Built-up Land that is covered by building structures and transport networks. 
Excluding mining areas

Bareland
Open spaces with little or no vegetation throughout the entire 
mapping period. Beaches, sand dunes, bare rocks, cliffs, including 
bare surfaces such as open mines.

Water Permanent open water courses, lakes, reservoirs, sea and ocean

Shrubland Heathland, moorland, and areas in transitional woodland-
shrubland.

Coniferous forest Woody vegetation, principally trees, where coniferous species 
predominate.

Broadleaf forest Woody vegetation, principally trees, where broadleaf species 
predominate.

Wetland

Wetland marsh Inland freshwater marshes and inland salt marshes.

Exploited peat bog Open exploited peat-producing wetlands that are not greatly 
affected by lakes, sea water or water from water courses.

Unexploited peat bog Open unexploited peat-producing wetlands that are not greatly 
affected by lakes, sea water or water from water courses.

Crop land and grassland.
Wheat, Barley, Rye; Oat, Maize, Seed crops, 
Root crops, Dry pulses and vegetable, 
Grassland

Arable land, permanent crops, heterogeneous agricultural areas. 
The Grassland class contains meadows, pastures, natural and semi-
natural grassland.

Table 1. Land cover hierarchy and nomenclature.
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We rasterized all crop reference data to a 30 m resolution that aligned with our remote sensing data (see Remote 
sensing data section). Next, in each year where crop data was available (2019, 2021 and 2023), we randomly sampled 
up to 50,000 training pixels per class. As a result, a total of around 2 million crop reference pixels were used for training.

remote sensing data. We downloaded all available remote sensing satellite scenes covering the BSR from 
2000 to 2022 (with cloud cover less than 75% per scene) of Landsat 5 TM (LS5); Landsat 7 ETM+ (LS7); Landsat 
8 OLI (LS8); Landsat 9 OLI+ (LS9) provided by United States Geological Survey (USGS, https://earthexplorer.
usgs.gov/), and Sentinel-2A (S2A) and Sentinel-2B (S2B) provided by the Copernicus Open Access Hub (https://
scihub.copernicus.eu/maintenance.html). Annual satellite availability is shown in Fig. 3a. In the study area, we 
limited the map coverage to land area only and intentionally excluded all tiles fully and permanently covered with 
water. This greatly reduced the physical space for remote sensing data storage as well as compute processing units.

All satellite data were harmonized and processed to Level-2 surface reflectance using the Framework for 
Operational Radiometric Correction for Environmental monitoring (FORCE31). Six reflectance bands were 
used: Red, Green, Blue, Near-Infrared, Shortwave-Infrared 1 and Shortwave-Infrared 2. We also included three 
additional indices: Normalized Difference Vegetation Index (NDVI28), Normalized Difference Water Index 
(NDWI29) and Soil-Adjusted Vegetation Index (SAVI32). All bands were processed at 30 m resolution, whereas 
higher resolution bands (from Sentinel-2 data) were resampled to the target resolution with FORCE using an 
approximated point spread function. The raster data were reprojected to ETRS89-extended/LAEA Europe 
(EPSG:3035) and divided into a regular 30 × 30 km grid (see Fig. 1). We derived annual clear sky observations 
(CSO) to provide an overview of data density per year (Fig. 3b).

Classification. The availability of remote sensing data varied greatly over years (Fig. 3). Therefore, when 
using temporal information as input data, it is often required to use aggregation methods to create equidistant 
feature spaces to support machine learning models1. However, Pham et al.33 demonstrated that most aggregation 
methods often transfer poorly when facing irregular temporal data, especially when mapping crop types. The 
authors proposed a generalized method for capturing annual time-series information called Temporal Encoding. 
This method involves filling a 365-feature data structure with clear observations, placing each observation in a 
position corresponding to its acquisition date. For days without clear observations, a blank value (0) is assigned. 
This way, the encoded input data is neither compressed nor extrapolated while remaining the consistent input fea-
ture length. The method has been shown to be highly robust even when the temporal data density varies between 
training and mapping data. In this study, we adapted the methods from Pham et al.33 with some slight alterations:

•	 We used weekly encoding: In each satellite band, we created an array with 52 time-steps, representing 52 
weeks of the year. For each time-step, all clear observations of every week (7 days) are averaged and posi-
tioned to their corresponding week. Weeks that do not have any clear observations are assigned with values 
of 0. Using weekly encoding allows the input features 7-times lighter compared to daily encoding (365 time-
steps) used in Pham et al.33, while still preserving the detailed LC phenology information (Fig. 4). In this 
study, we used 9 bands (6 spectral bands and 3 indices), making a total of 486 input features (52 time-steps x 
9 bands) for the classification model. Visualizations of the spectral features space of different land cover types 
for different time periods are shown in Fig. 4

•	 The input data (52 time-steps x 9 bands) is then used to train the 1-Dimensional Convolutional Neural Net-
work (1D-CNN) classifier. Here, the 1D convolution layers are applied to the temporal dimension of the input 
(Fig. 5), followed by max pooling layers and fully connected layers for estimating land cover type probabili-
ties. Details of the network architecture is provided in Supplementary File 1.

Data name Description Data source

Imperviousness layers
Pan-European level in the spatial resolution of 10 m and 100 m the sealing 
density in the range from 0% to 100% for the 2018 reference year, 20 m 
and 100 m for the 2006, 2009, 2012, and 2015 reference years.

https://land.copernicus.eu/en/products/high-
resolution-layer-imperviousness

Tree cover density layers
Pan-European level in the spatial resolution of 10 m and 100 m the level of 
tree cover density in a range from 0% to100% for the 2018 reference year, 
20 m and 100 m for the 2012 and 2015 reference years.

https://land.copernicus.eu/en/products/high-
resolution-layer-tree-cover-density

Forest type layers
Pan-European level in the spatial resolution of 10 m and 100 m a forest 
classification for three thematic classes (all non-forest areas/broadleaved 
forest/coniferous forest) with the agricultural/urban trees removed for the 
2018 reference year, 20 m and 100 m for the 2012 and 2015 reference years.

https://land.copernicus.eu/en/products/high-
resolution-layer-forest-type

CORINE land cover (CLC)

Pan-European CORINE Land Cover inventory for 44 thematic classes 
for the 2006, 2012, 2018 reference years. The dataset has a Minimum 
Mapping Unit (MMU) of 25 hectares (ha) for areal phenomena and a 
Minimum Mapping Width (MMW) of 100 m for linear phenomena and is 
available as vector and as 100 m raster data.

https://land.copernicus.eu/en/products/
corine-land-cover

Natura 2000 (N2K)
Detailed land cover and land use information for 55 thematic classes in 
selected Natura2000 sites for the 2006, 2012, 2018 reference years. The 
dataset has a Minimum Mapping Unit (MMU) of 0.5 ha and a Minimum 
Mapping Width (MMW) of 10 m and is available as vector data.

https://land.copernicus.eu/en/products/n2k

Spectral temporal metrics (STM)
Spectral temporal metrics (STM, e.g., minimum, maximum, median, 
percentiles, etc.) of Normalized Difference Vegetation Index (NDVI28) 
and Normalized Difference Water Index (NDWI29)

See in Remote sensing data section

Table 2. Reference LC data for training classification.
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•	 During the training process, we applied two data augmentation methods Random Observation Selection 
and Random Day Shifting proposed in Pham et al.33. These methods are used to simulate the temporal data 
sparsity and phenological shifts. Incorporating Temporal Encoding and data augmentations have been shown 

LC class Nomenclature
Training data (all following data sources are provided by EuroCrop GitHub repository: https://github.com/
maja601/EuroCrops; latest access 09.09.2024)

Wheat Winter/Spring soft wheat; Spring/Winter durum 
hard wheat; Buckwheat.

• 2019:
– Denmark: https://landbrugsgeodata.fvm.dk/

• 2021:
– Sweden: https://djur.jordbruksverket.se/swedishboardofagriculture.4.6621c2fb1231eb917e680002462.html
– Estonia: https://inspire-geoportal.ec.europa.eu/overview.html?view=thematicEuOverview&theme=none
– Lithuania: https://www.geoportal.lt/geoportal/nacionaline-mokejimo-agentura-prie-zemes-ukio-ministerijos#
savedSearchId=%7B772172A4-6719-48BD-8DDC-5DEEFB27DE74%7D&collapsed=true
– Latvia: https://www.lad.gov.lv/lv/atbalsta-veidi/platibu-maksajumi/lauku-registrs-un-karte/lauku-registra-dati/
– Germany (Lower Saxony): https://sla.niedersachsen.de/landentwicklung/LEA/

• 2023:
– Germany (Brandenburg): https://geobroker.geobasis-bb.de/gbss.php?MODE=GetProductInformation&PROD
UCTID=996f8fd1-c662-4975-b680-3b611fcb5d1f

Barley Winter/Spring barley.

Rye Winter/Spring rye

Oat Winter/Spring oat.

Maize Grain maize and green silo maize

Seed crops Winter/Spring/Summer rapeseed; Flax seed; Oil 
seed; Sunflower.

Root crops Potatoes; Sweet Potatoes; Sugar beet.

Dry pulses, 
vegetable

Legumes; Beans; Chickpeas; Lentils; Sweet lupin; 
Peas; Fresh vegetables; Strawberry.

Grassland Pasture, meadow, grassland.

Table 3. Crop types reference from EuroCrop dataset30.

Fig. 3 (a) Annual satellite availability in the study area. (b) Annual clear sky observations (CSO) from  
2000 to 2022.
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to greatly improve the transferability of the deep learning model, allowing to transfer the model trained with 
data from recent years to past years33.

To improve the mapping of agricultural and wetland areas, we used a hierarchical classification scheme 
(Fig. 2). In the first step (Level 1) the following general land cover types are differentiated: Built-up, Bareland, 

Fig. 4 (Top): Temporal encoding33 process converts annual time-series information to 52 feature spaces in  
one band (NDVI is used as an example, scaling by 10,000). (Bottom): Examples of spectral NDVI feature  
spaces for three LC types: built-up, broadleaf forest and unexploited peat bog in three different years (2006, 
2012, 2018). Red boxes in the high resolution image chips represent a 30 m × 30 m pixel over a corresponding 
land cover type.
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Water, Shrubland, Coniferous forest, Broadleaf forest, Wetland, Cropland and Grassland. Subsequently, the 
high-level more detailed classification (Level 2) was performed on top of level 1 maps. Here the Wetland class 
is further distinguished into: Wetland marsh, Exploited peat bog and Unexploited peat bog; and the classes 
Cropland and Grassland into: Wheat, Barley, Rye, Oat, Maize, Seed crops, Root crops, Dry pulses and vegetable, 
and Grassland.

Post processing. We performed post-processing for maps for: Level-1 and Level-2 maps (Fig. 6).

•	 For both levels, we applied spatial filtering independently for each product (Fig. 6a). Specifically, in each 
annual map, we used a 3 × 3 pixels majority filter across the map. For each run, if the center pixel’s LC class 
differed from the eight surrounding pixels, it was converted into the major LC class within the window.

•	 For Level 1 maps, after spatial filtering, we performed temporal filtering for every pixel (Fig. 6b). Here, 
the temporal window has a length of 3 (years) running backwards from 2022 to 2000. For each run, if the 

Fig. 5 Simplified 1-Dimensional Convolutional Neural Network (1D-CNN) architecture for land cover 
classification with temporal encoding input. Details of the network architecture is provided in Supplement File 1.

Fig. 6 Post processing. (a) Spatial filtering (applying to both Level 1 and Level 2 maps); (b) Temporal filtering 
(for Level 1 maps); (c) Spatial-temporal filtering (for Level 2 maps).
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surrounding years’ pixels have the same LC and the center year’s pixel has different LC, the center year’s LC is 
converted into the surrounding LC.

•	 For Level 2 maps, the temporal filtering process cannot be applied to the maps since crop sequences can hap-
pen frequently, i.e., one crop type pixel can be changed to others in next year and returned to the same type 
in the following years. Hence, we applied a hybrid method namely spatial-temporal filtering (Fig. 6c). Here, 
a 3 × 3 × 3 pixels cube moving window (height × width × temporal) runs across maps of every three years 
simultaneously (backward from 2022 to 2000). In each current window, if two patches of the surrounding 
years have the same LC types in all nine pixels, the pixels of the center patch are converted to the pixels of the 

Fig. 7 Examples of Level 2 land cover maps (2015) before and after post-processing.

LC type Map value LC type Map value

Built-up 1 Wheat 10

Bareland 2 Barley 11

Water 3 Rye 12

Shrubland 4 Oats 13

Coniferous forest 5 Maize 14

Broadleaf forest 6 Seed crops 15

Wetland marsh 7 Root crops 16

Exploited peat bog 8 Pulses, vegetables 17

Unexploited peat bog 9 Grassland 18

Table 4. BSRLC+ land cover types and corresponding values.
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surrounding patches only if it also has at least seven similar pixel values. This method allows us to filter tem-
poral noise up to two pixels in a 3 × 3 window, while ensuring that the crop sequences are not over-filtered.

The post-processing methods greatly improved the maps’ visuals by reducing noise (Fig. 7). To ensure the 
quality of the maps, we compared the accuracy of the maps before and after post-processing at each level. The 
related confusion matrices are shown in Supplement File 1.

Data Records
The Baltic Sea Region Land Cover Plus (BSRLC+) dataset is available in the Zenodo repository34 (https://
zenodo.org/records/10653871). The dataset consists of twenty-three annual land cover maps (from 2000 to 
2022), containing 18 land cover types (see Fig. 1), in GeoTIFF format, with a 30 m x 30 m spatial resolution, 
projected to ETRS89-extended/LAEA Europe (EPSG:3035). The classification legend is shown in Table 4, and 
included as an additional file in the Zenodo repository (BSRLC_legend.xlss).

The training and validation data used in this study to create the maps are available in a separate Zenodo 
repository35 (https://zenodo.org/records/11073291). In the dataset, we provide point vector files in geopackage 
format (.gpkg) containing LC training and validation data. Each reference point is located in the center of a 
30 × 30 m pixel. Data is projected to ETRS89-extended/LAEA Europe (EPSG:3035). The training points include 
general LC types which are considered to be consistent (invariant) during the period from 2006 to 2018. Training 
points for crop types are derived from EuroCrop dataset30, available for the three years: 2019, 2021 and 2023. For 
validation we used the manually annotated data (Table 5), as well as the harmonized version of the Land Use/
Cover Area frame Survey (LUCAS) data36, which we reclassified to match the BSRLC+ legend (Table 4)

technical Validation
Validation data. The Land Use/Cover Area frame Survey (LUCAS, https://ec.europa.eu/eurostat/web/lucas) 
program provides in-situ LULC. In this study, we used the harmonized version of LUCAS data36 available in four 
years (2009, 2012, 2015, 2018) to independently validate the BSRLC + maps.

Since LUCAS points are often annotated with the LC type of the exact surveying location, they do not always 
represent the LC of 30 m resolution pixels. Thus, we only selected LUCAS points based on the physical rep-
resentation at 30 m resolution. This was performed by manual interpretation of the homogeneity of the pixels 
containing LUCAS points using high resolution imagery from Google Earth. For three classes, i.e., wetland 
marsh, exploited peat bog and unexploited peat bog, there were only a few samples from the LUCAS surveys 
(possibly due to the limited accessibilities to the surveying areas), and the LUCAS data also do not separate the 
peat bog classes. Hence, we performed manual labelling for these three specific classes. To do this, we used the 
original LUCAS grids (2 km × 2 km) combined with the Global Peatland Database (GPD, https://greifswald-
moor.de/global-peatland-database-en.html). The intersected LUCAS - GPD points were then manually labelled 
in four years (2009, 2012, 2015 and 2018) using historical high-resolution images from Google Earth. As a result, 
we acquired around 15,000 to 19,000 validation points in each year (2009, 2012, 2015 and 2018, see Table 5)

Baseline (9-classes LC maps) assessments. First, we evaluated the thematic accuracies of our maps by 
comparing them to existing LULC products. We compared our BSRLC+ maps to CORINE land cover (CLC2, 
100 m resolution, available in 2012 and 2018), Continental-European land cover (P-ELC6, available in 2009, 2012, 

2009 2012 2015 2018

Built-up 505 608 655 999

Bareland 65 88 78 63

Water 438 682 483 525

Shrubland 292 409 409 360

Broadleaf forest 1564 2230 2207 1518

Coniferous forest 4169 4912 4857 2908

Wetland

Wetland marsh 104 104 105 106

Exploited peat bog 104 116 118 124

Unexploited peat bog 665 665 665 663

Cropland

Wheat 1989 2098 2697 2648

Barley 1121 1273 1154 1304

Rye 670 710 722 722

Oat 361 511 388 411

Maize 571 1011 1076 1212

Seed crops 888 865 1162 1264

Root crops 432 523 507 633

Dry pulse, vegetable 111 150 271 308

Grassland 1781 1664 1830 1688

Total 15830 18619 19384 16938

Table 5. Number of validation points in four years 2009, 2012, 2015 and 2018.
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2015 and 2018) and Pan-European land cover (P-ELC3, available in 2015). To create comparable results, we aggre-
gated maps of all products into nine LC classes. Specifically, all crop classes (excluding grassland) were aggregated 
as Cropland class; three classes: Wetland marsh, exploited peat bog and unexploited peat bog were aggregated as 
Wetland. Subsequently, we measured the F1 score for each class, with:

F True Positive
True Positive True Positive False Positive

1
0 5( ) (1)

 
   

= ∑
∑ + . ∑ + ∑

The baseline validation results (Table 6) showed that our maps produced the highest scores in every class 
compared to the three other LC products2,3,6. Notably, both P-ELC3 and C-ELC6 maps were created by super-
vised models that were trained with the in-situ LUCAS data directly. Our classifiers, on the other hand, were 
trained with independent datasets, and yet achieved the best validation results with LUCAS data. Hence, the 
thematic accuracy of our maps for nine LC types fully satisfies the standard of existing LULC maps in Europe.

Full (18-classes LC maps) assessments. Next, we evaluated accuracies of all 18-classes of the BSRLC+ 
maps in four years (2009 - Table 7, 2012 - Table 8, 2015 - Table 9, and 2018 - Table 10). Here, for each class, we 
measured the mapped area and estimated area (in km2), Overall Accuracy (OA), Producer Accuracy (PA) and 
User Accuracy (UA) using the validation procedure of Olofsson et al.37. This approach takes the total mapped 
areas of each LC into consideration and provides the uncertainty of each metric with confidence intervals.

The OAs were relatively similar in the four validation years, with roughly 0.8 in 2009 and 2012, and 0.83 
in 2015 and 2018, respectively. Class-wise, built-up areas, water, broadleaf forests, and coniferous forests 

BSRLC+ CLC2 C-ELC6 P-ELC3

Buit-up

2009 0.96 0.90

2012 0.96 0.83 0.90

2015 0.97 0.90 0.93

2018 0.98 0.87 0.91

Bareland

2009 0.69 0.59

2012 0.70 0.54 0.58

2015 0.84 0.65 0.58

2018 0.67 0.34 0.54

Water

2009 1.0 0.98

2012 0.99 0.95 0.98

2015 0.99 0.98 0.97

2018 1.0 0.94 0.98

Shrubland

2009 0.36 0.20

2012 0.42 0.16 0.21

2015 0.51 0.27 0.50

2018 0.55 0.13 0.15

Broadleaf forest

2009 0.88 0.80

2012 0.90 0.61 0.80

2015 0.91 0.87 0.90

2018 0.91 0.62 0.86

Coniferous forest

2009 0.95 0.94

2012 0.95 0.86 0.93

2015 0.96 0.95 0.96

2018 0.96 0.84 0.93

Wetland

2009 0.91 0.88

2012 0.90 0.82 0.88

2015 0.93 0.91 0.91

2018 0.95 0.83 0.90

Cropland

2009 0.96 0.92

2012 0.97 0.91 0.94

2015 0.98 0.95 0.98

2018 0.97 0.92 0.94

Grassland

2009 0.83 0.75

2012 0.84 0.59 0.80

2015 0.87 0.81 0.87

2018 0.85 0.49 0.77

Table 6. Class-wise F1-score of 4 LULC products.
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consistently achieved the highest accuracies among all land cover classes, with both PAs and UAs consistently 
exceeding 0.8 across all validation years. Bareland showed PAs ranging from 0.50 to 0.64, with higher UAs 
ranging from 0.68 to 0.80. Shrubland exhibited slightly higher PAs than UAs, ranging from 0.65 to 0.86 and 
0.30 to 0.56, respectively. Exploited and unexploited peat bogs typically had PAs between 0.3 and 0.4, except for 
2018 when exploited peat bogs had a PA of 0.7, while both classes achieved UAs consistently above 0.9. Wetland 
marshes showed PAs ranging from 0.84 to 0.95, with UAs approximately between 0.39 and 0.58.

Results for agricultural classes varied considerably. Wheat, maize, seed crops, and grasslands consistently 
achieved higher accuracies than other classes across most years, with PAs and UAs ranging from 0.55 to 0.89 
and 0.68 to 0.91, respectively. Other cereals such as barley, rye, and oats yielded PAs between 0.25 and 0.65 and 
UAs between 0.25 and 0.68. Root crops, dry pulses, and vegetables had the lowest accuracies initially, with PAs 
around 0.3 for both in 2009 and 2012, which notably improved to approximately 0.53 to 0.77 in 2015 to 2018. 
While root crops consistently achieved over 0.7 for UAs in all four years, the accuracy for dry pulses, and vegeta-
ble was notably lower, hovering around 0.2 in 2009 and 2012, and approximately 0.4 in 2015 and 2018. Overall, 
most agricultural classes displayed improved accuracies in 2015 and 2018 compared to earlier years.

LC name Mapped area (km2) Estimated area (km2) Producer’s accuracy User’s accuracy

Built-up 45732 44364 ± 1287 0.98 ± 0.02 0.95 ± 0.02

Bareland 2901 5058 ± 1748 0.39 ± 0.14 0.68 ± 0.11

Water 203698 201855 ± 1800 1.00 ± 0.00 0.99 ± 0.01

Shrubland 84162 39537 ± 4291 0.65 ± 0.05 0.30 ± 0.04

Broadleaf forest 128648 135297 ± 3906 0.84 ± 0.02 0.88 ± 0.02

Coniferous forest 223822 257119 ± 4430 0.84 ± 0.01 0.97 ± 0.01

Wetland marsh 25194 10682 ± 1859 0.92 ± 0.09 0.39 ± 0.06

Exploited peat bog 998 2294 ± 949 0.42 ± 0.17 0.96 ± 0.04

Unexploited peat bog 6340 18249 ± 2688 0.34 ± 0.05 0.97 ± 0.01

Wheat 74779 83733 ± 2952 0.61 ± 0.02 0.68 ± 0.02

Barley 29696 47342 ± 2530 0.35 ± 0.02 0.56 ± 0.03

Rye 35462 32470 ± 2222 0.49 ± 0.03 0.45 ± 0.04

Oat 27151 16728 ± 1739 0.41 ± 0.06 0.25 ± 0.03

Maize 23877 26903 ± 1497 0.73 ± 0.04 0.83 ± 0.03

Seed crop 28071 29915 ± 1371 0.77 ± 0.03 0.82 ± 0.03

Root crop 5633 16085 ± 1419 0.31 ± 0.03 0.90 ± 0.04

Dry pulse, vegetable 8110 4863 ± 929 0.34 ± 0.10 0.21 ± 0.05

Grassland 174614 156392 ± 4021 0.89 ± 0.01 0.79 ± 0.02

Overall accuracy (%) 0.80 ± 0.01

Table 7. Accuracy assessments in 2009.

LC name Mapped area (km2) Estimated area (km2) Producer’s accuracy User’s accuracy

Built-up 43932 41488 ± 901 0.99 ± 0.01 0.93 ± 0.02

Bareland 2785 4103 ± 1030 0.50 ± 0.13 0.74 ± 0.10

Water 203519 201967 ± 1453 1.00 ± 0.00 0.99 ± 0.01

Shrubland 89796 53221 ± 4688 0.67 ± 0.04 0.40 ± 0.05

Broadleaf forest 135262 144906 ± 3590 0.85 ± 0.02 0.91 ± 0.01

Coniferous forest 21843 246565 ± 4241 0.85 ± 0.01 0.96 ± 0.01

Wetland marsh 26560 11617 ± 1979 0.88 ± 0.09 0.39 ± 0.06

Exploited peat bog 1079 2115 ± 843 0.49 ± 0.20 0.96 ± 0.04

Unexploited peat bog 7583 17305 ± 2470 0.42 ± 0.06 0.96 ± 0.01

Wheat 60457 74478 ± 2682 0.55 ± 0.02 0.68 ± 0.02

Barley 21660 47034 ± 2447 0.25 ± 0.02 0.54 ± 0.04

Rye 25535 28675 ± 1960 0.42 ± 0.03 0.48 ± 0.04

Oat 51468 20610 ± 1789 0.53 ± 0.05 0.21 ± 0.02

Maize 33244 38542 ± 1705 0.71 ± 0.03 0.82 ± 0.03

Seed crop 25836 27700 ± 1296 0.75 ± 0.03 0.81 ± 0.03

Root crop 8060 17367 ± 1358 0.34 ± 0.03 0.74 ± 0.05

Dry pulse, vegetable 11679 6157 ± 1038 0.32 ± 0.09 0.17 ± 0.04

Grassland 161994 145036 ± 3966 0.89 ± 0.02 0.80 ± 0.02

Overall accuracy (%) 0.79 ± 0.01

Table 8. Accuracy assessments in 2012.
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Comparison with crop statistics. We further evaluated the crop type classification by comparing the 
estimated areas with official agricultural statistics. Here, we used the national agricultural statistics data for 
Denmark38, which was available for 14 consecutive years from 2009 to 2022.

The results are shown in Fig. 8. Overall, crop area estimations from the BSRLC+ maps showed similar results 
as the Denmark national statistics in most years. Wheat accounted for the major agricultural area in the coun-
try in most years, which was a similar result as from the maps. However, great underestimations of Barley can 
be seen e.g., in 2009, 2010, 2011, 2012. This could be related to the overestimations of Oat and Rye in the same 
years, which could be seen from the confusion matrices. In addition, after 2017, crop area estimations tend to 
be more accurate in recent years, due to the availability of Sentinel-2 data which greatly improved the temporal 
density of the time series (Fig. 3).

Qualitative assessment of peat exploitation. We evaluated the peat exploitation mapping quality using 
historical imageries from Google Earth. From the BSRLC + annual maps, we identified an area in Estonia (Fig. 9) 
where peat bogs have been actively mined every year from 2000 to 2022. From the high-resolution imageries, 

LC name Mapped area (km2) Estimated area (km2) Producer’s accuracy User’s accuracy

Built-up 46281 44292 ± 768 0.99 ± 0.00 0.95 ± 0.02

Bareland 2613 3578 ± 960 0.64 ± 0.17 0.88 ± 0.08

Water 203912 201410 ± 1991 1.00 ± 0.00 0.99 ± 0.01

Shrubland 110286 65553 ± 5481 0.81 ± 0.03 0.48 ± 0.05

Broadleaf forest 126300 142118 ± 4123 0.82 ± 0.02 0.93 ± 0.01

Coniferous forest 216730 241204 ± 4540 0.87 ± 0.02 0.97 ± 0.01

Wetland marsh 17583 10642 ± 2030 0.82 ± 0.12 0.50 ± 0.07

Exploited peat bog 874 1840 ± 868 0.47 ± 0.22 0.98 ± 0.03

Unexploited peat bog 6089 16027 ± 2774 0.36 ± 0.06 0.96 ± 0.02

Wheat 76062 83939 ± 2153 0.73 ± 0.02 0.81 ± 0.01

Barley 29073 39550 ± 1899 0.49 ± 0.02 0.66 ± 0.03

Rye 31532 29418 ± 1665 0.65 ± 0.03 0.60 ± 0.04

Oat 33554 16362 ± 1574 0.49 ± 0.06 0.24 ± 0.03

Maize 32466 38611 ± 1314 0.77 ± 0.02 0.92 ± 0.02

Seed crop 31453 32530 ± 1113 0.83 ± 0.02 0.85 ± 0.02

Root crop 11159 14720 ± 1099 0.59 ± 0.04 0.78 ± 0.04

Dry pulse, vegetable 22167 12096 ± 1198 0.77 ± 0.05 0.42 ± 0.05

Grassland 130753 134997 ± 3381 0.86 ± 0.02 0.89 ± 0.01

Overall accuracy (%) 0.83 ± 0.01

Table 9. Accuracy assessments in 2015.

LC name Mapped area (km2) Estimated area (km2) Producer’s accuracy User’s accuracy

Built-up 46635 46534 ± 1138 0.97 ± 0.02 0.97 ± 0.01

Bareland 2811 3834 ± 964 0.59 ± 0.14 0.80 ± 0.12

Water 203573 203186 ± 785 1.00 ± 0.00 1.00 ± 0.00

Shrubland 117213 76460 ± 6417 0.86 ± 0.02 0.56 ± 0.05

Broadleaf forest 122920 132471 ± 4399 0.85 ± 0.03 0.92 ± 0.01

Coniferous forest 216296 232708 ± 4749 0.90 ± 0.02 0.96 ± 0.01

Wetland marsh 20382 12383 ± 1704 0.95 ± 0.06 0.58 ± 0.08

Exploited peat bog 1117 1576 ± 421 0.70 ± 0.19 0.99 ± 0.02

Unexploited peat bog 6229 19840 ± 3759 0.30 ± 0.06 0.96 ± 0.02

Wheat 72428 78996 ± 2307 0.66 ± 0.02 0.72 ± 0.02

Barley 40016 42117 ± 1882 0.56 ± 0.02 0.59 ± 0.03

Rye 29713 25960 ± 1535 0.62 ± 0.03 0.54 ± 0.04

Oat 28877 15131 ± 1401 0.52 ± 0.05 0.27 ± 0.03

Maize 26692 42649 ± 1819 0.57 ± 0.02 0.91 ± 0.02

Seed crop 29524 32546 ± 1232 0.75 ± 0.03 0.83 ± 0.02

Root crop 11070 18404 ± 1482 0.53 ± 0.04 0.88 ± 0.03

Dry pulse, vegetable 24272 11714 ± 1149 0.73 ± 0.05 0.35 ± 0.04

Grassland 129119 132378 ± 4478 0.84 ± 0.02 0.86 ± 0.02

Overall accuracy (%) 0.83 ± 0.01

Table 10. Accuracy assessments in 2018.
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Fig. 8 Annual crop statistics of Denmark from 2009 to 2022 compared to estimated areas from BSRLC+.

Fig. 9 Peat bog exploitation in Estonia over two decades (2000–2022). (Left): Visual assessments showed similar 
patterns of exploited peatbog between high resolution images from Google Earth and the classification from BSRLC+ 
in three different years: 2000, 2010 and 2020. (Right): Estimated peatbog exploitation by year derived from the maps.
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the exploited peat bogs appeared as linear trenches that can be visually distinguished from natural peat bogs in 
three years (2000, 2010 and 2020). In responses, our maps correctly captured the increases in mining areas in the 
respective years.

Code availability
The BSRLC+ maps are available in Zenodo repository34 (https://zenodo.org/records/10653871), training 
and validation datasets used in this study are available in a separate repository35 (https://zenodo.org/
records/11073291). For creating the maps, we used open-source framework and tools to produce and present our 
mapping products, including Python 3.9, TensorFlow 2.10.0, QGIS 3.34. Remote sensing data was processed using 
FORCE, available on GitHub (https://github.com/davidfrantz/force). Codes used for land cover classification 
(including the pre-trained models) are available on GitHub (https://github.com/vudongpham/BSRLC).
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